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We consider the one-fluid flow of a monodispersed mixture of bubbles with an incompres- 
sible liquid. We derive a system of equations of motion which are intermediate between the 
known equilibrium and nonequilibrium models. The advantage of these equations is that they 
lead to separation between the average characteristics of the flow (the velocity, pressure, 
total energy of the mixture) and fast oscillations on the background of this average motion~ 
in the absence of dissipation the equations for the average quantities reduce to the equa- 
tions of motion of an inviscid, nonconducting gas. 

i. Equations of Motion. The one-fluid motion of a monodispersed mixture of bubbles 
with an incompressible liquid is considered in the framework of the lordanskii-Kogarko model 
[1-4]: 

v t - u ~ = O ,  u t ~ - p ~ - ~ O ;  (1.I) 

g R t t +  3R~/2 = (P2 - -  P --  2a/R)/Pl --  4vlRt/R; (1.2) 

c2t = O, n t = O. ( 1 . 3 )  

Here t is time; x, mass Lagrangian coordinate (see [5], for example); u, velocity of the 
mixture; v = cl/pl + cfvf, the specific volume of the mixture; ci, the mass concentrations 
(c I + c 2 = i, c 2 = afv/v=); ~2 is the volumetric concentration of the gas phase; p~, density 
of the liquid phase, which is assumed to be incompressible; v 2 = n4~Rm/(3Ca), the specific 
volume of the gas phase; R, the radius of a bubble; o, the surface tension; n, the number 
of bubbles per unit mass of the mixture; p, pressure of the mixture, which is assumed to 
be equal to the pressure of the liquid phase; P2 = Pf(Vf), the pressure of the gas phase; 
v I, the kinematic viscosity of the liquid phase. The mass Lagrangian coordinate x is intro- 
duced to shorten the equations. We note that the Rayleigh-Lamb equation (1.2), with (i.i) 
and (1.3) taken into account, can be written in the form 

(e + u~/2 + n(E r + Ea))t + (pu)~ = - -Sv lnEr /R  ~, ( 1 . 2 a )  

where 

e = C 2 E 2 ( U 2 )  , de2/dv 2 = - - P 2 ,  Er = 2nR3plR~, Ez = &nR2~. ( 1 . 4 )  

Equation (1.2) follows directly from (l.fa) after differentiation and use of (1.4). For 
a compressible liquid the Rayleigh-Lamb equation can be written in the form of a conserva- 
tion law; see [6], for example. 

We consider rapidly oscillating solutions of the system (1.1)-(1.3)o This means that 
there are two characteristic scales of length in the flow: % and L, the wavelengths of short 
and modulated waves, such that the parameter 6 = %/L is assumed to be small. A general meth- 
od of studying solutions of this type was worked out for conservative systems by Whitham 
and associates [7]. In essence, this method is a special case of the averaging method of 
Krylov-Bogolyubov-Mitropol'skii. A discussion of asymptotic methods of constructing such 
singular solutions and their applications to hydrodynamics, nonlinear optics, etc., was given 
in [8]. 

2. Derivation of the Modulation Equations. We use (i.1)-(1.3) as the starting point. 
Let 5 be a small parameter. Following [7], we introduce the slow variables T = 6t, X = 6x~ 
and the fast variable (phase) 8 = O (T, X)/6; we call k = 8 x = @X the local wave number and 

= -8 t = -O t the local frequency. We let w = (R, p, u, c2, n), and assume thatw- w(%~ T, 
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X), where the dependence on the variable 0 is assumed to b~ periodic. The peri0d can Be 
taken as 2z with no loss of generality, since if the period is <0 we can make the change 
of variable 0' = 2~8/T0. Using the derivative formulas 

a a a a k-~-o- , 6 o - d - d ~ - - m ~  + eaT' a~ § a--~' 

we obtain the following expanded set of equations from (1.1)-(1.3): 

5(% -- ux) " (--vo~ -- uk)o = O, 5(u r , Px) " (--u~o , pk)o = O, 
6 { ( & ,  u 2 / 2 ,  n(E~ , Ea))r , (pu)x} --  

o Q a , ( - - (o(8,  u - l ~ ,  n ( E ~ ,  E~)) , kpu)o = --8vlnE/R-, 
6~:r " ( - n ~ ) o  = O, 6c.~, , (-c.,~)o = O. 

We will also assume that the viscosity v I of the liquid is either zero or O(~). In the lat- 
ter case, ~ = lim vl/~. Writing w as a Series expansion of the form w = w0(0, T, X) . 6wi(0, 

6~0 

T, X) + ..., we retain only terms of order 6 ~ or 6 in the expanded system of equations. To 
order 60 we have the conservation laws (after integration with respect to 8) 

VoO~ + Uok --  M(T,  X),  --UoCO + pok = P(T,  X),  

no = N(X) ,  C2o = C(X),  

- -  r ( % ,  n o (E~o + Ezo) , u~/2) , k p #  o = ,4 (T,  X) ,  

and to order 6 we have the equations 

Vor - -  Uox �9 (--rico - -  ulk)o = 0, Uor " P o x +  (--u~co + plk)o = O, 

(% + n o ( E ~ o ,  Eoo) + u ~ / 2 ) r ,  (Po%)x �9 F (w o, WOo = - -  8vnoEro/B~, 
nor § ( -n l~)0  = 0, c~0r + (-c~1~)0 = 0. 

The function F(w0, Wl) can easily be recovered from the energy equation. For an arbitrary 

function f(e, T, X) we define 

2~ ,y </> = ~ -  / (o, T, X) d0. 
0 

Then, using the periodicity of w 0 and wl, and integrating with respect to 0, we obtain the 
following system of equations for w0 and <w0) (the subscript 0 on the dependent variables 

will be omitted): 

<v>r--  (U)x = 0, (u> r + (P)x=O; ( 2 . 1 )  

(e + n(Er + Ez) + u~/2)r " (PU)x = --8v(nEr/B~); ( 2 . 2 )  

<n)r = 0, (c2 >r = 0. ( 2 . 3 )  

Sinqe:: n and c= do n o t  depend on 0, we have  <n> = n,  <c2> = c2.  For  s i m p l i c i t y ,  we w i l l  a s -  
sume t h a t  n and c 2 a r e  c o n s t a n t s .  The e q u a t i o n s  t o  o r d e r  6 ~ can be w r i t t e n  in  t h e  form 

v~ + uk = (v)~ , (~)k. - -u~  , pk = - - ( u ) ~  , ~ ) k ;  ( 2 . 4 )  

--~(8 , n(E r -~- Ea) , ~ / 2 ) ,  puk = A(T. X). ( 2 . 5 )  

We n o t e  t h a t  in  t h e  c a s e  v l  = 0, Eqs.  ( 2 . 1 ) - ( 2 . 5 )  c o u l d  have  been o b t a i n e d  u s i n g  t h e  
a v e r a g e d  L a g r a n g i a n  method [ 7 ] ,  f o r m u l a t e d  f o r  t h e  f o l l o w i n g  f u n c t i o n a l ,  which  r e p r e s e n t s  
t h e  a c t i o n  in  t h e  s e n s e  o f  H a m i l t o n i a n  m e c h a n i c s :  

dt dx 
t o x o 

(qt = u, qx = v, q is the Euler coordinate). 
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The problem then consists of finding a closed system of equations for the average quan- 
tities. The system of equations is obtained in two steps. First, we prove the following 

rather remarkable fact. 

THEOREM 2.1. The following equation is satisfied: <pu> = <p><u> + 0(~22), <u> 2 = 
<u>2 + O(a22) (=2 is the volumetric concentration of bubbles). 

This means that the corresponding correlations are decoupled from one another. Indeed, 
the original system of equations (1.1)-(1.3) was obtained by discarding terms of order O(a~) 
[I], and therefore it makes no sense to retain terms of this order in the averages. Second, 
~e write out specific formulas for quantities of the type <Er>. 

Proof. Multiply the first equation of (2.4) by vk -I and then take the average value,, 
Multiply the same equation by uk -~ and then take the average value. Letting D = m/k, we 

have 

( u v > - -  <u) <u> = (<u? - -  <v ~>)D; (2 .6 )  

(u 2 ) - -  <u >~" =- ( (u > <u ) - -  (vu >)D. (2 .7 )  

It then follows that 

( u : ) - -  (u) z = ((v2> - -  (u>2)D ~. 

Multiplying the second equation of (2.4) by uk -l and using (2.8), we obtain 

(pu>-- (p)(u) = Da((u 2)- <v)2). 

Note that v = cl/p i + 4~R3n/3, i.e., <vf> -<v> 2 = (4~n)2(<R6> - <R~>2)/9 = 0(~2 

(2 .8 )  

( 2 . 9 )  

2). Because 

the phase velocity D is finite [in the opposite case it follows from (2.4) that the depen- 
dence on the fast variables drops out], the assertion of the theorem follows from (2.8) and 

( 2 . 9 ) .  

We calculate the quantities <c + n(E r + Ec)> and <Er/R2>. To do this we transform (2.5) 
Substituting the expressions u = <u> - (v - <v>)D, p = <p> - (v - <v>)D a in place of u and 
p, we find g + n(E r + E o) + <p>v - (v - <v>)2Df/2 = H(T, X), H(T, X) = -A(T, X)/m - <u>2/2 + 
<p><u>/D + <p><v>. Because (v - <v>) 2 = 0(~22), we finally obtain 

g ~ n(fr ~ Eo) ~ (p )v  ~ H ( T ,  X )  (2 .10)  

(H can be interpreted as the specific internal energy of the mixture). In particular, it 

follows from (2.10) that 

<~ § n(E~-? E.)> = H - -  <p><v>. 

Because E r = 2~RBplR@2m 2 , (2.10) can be rewritten in the form 

2 n R 3 p p ~ R ~  = ~ ( H , < p > , R ) - - - ~ H - - < p > u  - - n E o  - -  ~. 

I f  the  f u n c t i o n  @ has two s imple  ze roe s :  Ri(H, <p>), Rf(H, <p>) (R z 

(2.1i) 

(2 .12 )  

< R 2) and ~ > 0 between 
these zeroes, then this will mean that the fast variable has been introduced correctly. An 
example is given below where this is true. Since the period of the oscillations is 2~, we 
obtain a nonlinear dispersion relation from (2.12): 

I ,_Z_ .R 2 /~3/2 i-- 1 
R 1 

(2 .13)  

Furthermore, 

2~ R2 
t r ! o -~1 e nErdR 

<nEr/R~> = f-d nE, ,  R-dO .... J. 
R~dB/dO 

o R 1 
Bo 

~ 17{ - RB/2dR 

(2.14) 
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and the average specific volume of the mixture is 

<v> =- V( t t ,  <p>) -- c~/p~ § 4an <R3>/3 = 

= ej/91 + (4~n/3) I R"/2 a/~ 
+. 

( 2 . 1 5 )  

Finally, we obtain the following system of equations for the averages <u>, <p>, and H in 
terms of the original unstretched variables x and t using Theorem 2.1 and the relation (2.11): 

(v>~ -- <u>~ = 0; (2.16) 

(u>~ + <p>~ ~ 0; (2.17) 

(H- <p> <v> + (u>2/2)t + (<p><u>)~ = --8v~<nEr/R~> (2.18) 

[<v> = V(H, <p>) is given by (2.15), and <nEt/R2> by (2.14)]. If the average quantities 
are known, we can find the form of the fluctuations. Indeed, from the consistency equation 
8tx = 8xt it follows that 

k, + ~ ~ 0. ( 2 . 1 9 )  

I f  k ( 0 ,  x)  i s  s p e c i f i e d ,  t h e n  k ( t ,  x)  can be found  f rom ( 2 . 1 3 )  and ( 2 . 1 9 ) .  The f u n c t i o n  
R(O, t ,  x ) i s  found  f rom ( 2 . 1 2 ) ,  w h i l e  u ( 8 ,  t ,  x)  and p ( 8 ,  t ,  x)  a r e  found  f rom ( 2 . 4 ) .  

3. A n a l y s i s  o f  t h e  Sys tem ( 2 . 1 6 ) - ( 2 . 1 8 )  and Examples .  The m o d u l a t i o n  e q u a t i o n s  have  
t h e  same fo rm as  t h e  e q u a t i o n s  o f  m o t i o n  o f  an i n v i s c i d ,  n o n c o n d u c t i n g  g a s ,  in  which  t h e r e  
i s  an e n e r g y  d r a i n  ( i f  v 1 * 0 ) ,  and where  H i s  t h e  e n t h a l p y  o f  t h e  g a s .  Below we o b t a i n  
e x p r e s s i o n s  f o r  t h e  " t e m p e r a t u r e "  and " e n t r o p y "  o f  t h e  g a s - l i q u i d  m i x t u r e .  

R 2 

THEOREM 3.1. L e t  m -~ (o, S -~ 2 ] / r ~  [ 1~3/2 ]/--~ dR. Then TdS = dH - <v>d<p>. 
B 1 

P r o o f .  I t  i s  s u f f i c i e n t  t o  d e m o n s t r a t e  t h a t  zS H = 1, ~S<p> = - < v > ,  which  can  be v e r i -  
f i e d  by d i r e c t  d i f f e r e n t i a t i o n  and u s e  o f  ( 2 . 1 5 ) .  

N o t e .  I f  v l  ~ 0,  t h e  " e n t r o p y "  S (which  i s  a m e a s u r e  o f  t h e  i n t e n s i t y  o f  t h e  o s c i l l a -  
t i o n s  in  t h e  m i x t u r e )  in  t h e  c o n t i n u o u s  s o l u t i o n s  d e c r e a s e s .  

We d i s c u s s  t h e  t y p e  o f  t h e  s y s t e m  o f  m o d u l a t i o n  e q u a t i o n s .  C a l c u l a t i n g  t h e  s l o p e s  o f  
t h e  c h a r a c t e r i s t i c s ,  we o b t a i n  A1, 3 = ; 1 / / V V  H - V < p > ,  ~2 = 0. Hence t h e  e q u a t i o n s  a r e  hy -  
p e r b o l i c  i f  

vv~ + v~,~ < o. (3.1) 

THEOREM 3.2. Let R, be a point of equilibrium such that ~R(H, <p>, R,) = 0. We also 
suppose that eRR(H, <p>, R,) < 0. Then the inequality (3.1) is satisfied for small deviations 
from the equilibrium position. 

Proof. We expand the function #(H, <p>, R) in a Taylor series about the point R,, 
CR(H, <p>, R,) = 0: 

(H, <p>, R) = ~ ,  + eRR (H, <p>, R , ) : ( R -  R,)2/2 + . . .  

Because  CR = 4wR2n(p2 - 2o/R - <p>) ,  we have  

( 3 . 2 )  

@~R (H, <p>, B, )  = 4 u R , n  (2~/H, + 3v2dp2/dv2 IR=R,). ( 3 . 3 )  

I n  p a r t i c u l a r ,  i t  f o l l o w s  t h a t  i f  t h e  gas  making  up t h e  b u b b l e s  i s  p o l y t r o p i c  and <p> > 0, 
t h e n  eRR(H, <p>, R , )  < 0. I n d e e d ,  s g n ~ R R ( R , )  = s g n ( p 2 ( 1  - 3~) - <p>) = - 1 ,  s i n c e  ~ > 1 
(y  i s  t h e  p o l y t r o p i c  e x p o n e n t ) .  The l e a d i n g  t e r m  d e t e r m i n i n g  t h e  e q u a t i o n  o f  s t a t e  i s  w r i t -  
t e n  in  t h e  fo rm v = C l / p l  + 4 ~ n R , 3 / 3 .  Because  R,  depends  o n l y  on <p>, we have  V H = 0, and 
the derivative with respect to <p> can be calculated from the formula 

V(p) = 4anR~dR, /d  <p> = 4anR~/(2o/R,  + 3v2dp2/dv 2 IR=R,). 

The s i g n  o f  t h e  d e n o m i n a t o r  o f  t h e  f r a c t i o n  in  t h e  e x p r e s s i o n  f o r  V<p> i s  t h e  same as  t h a t  
o f  eRR(H, <p>, R , ) .  Hence t h e  t h e o r e m  i s  p r o v e d .  
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We will put o = 0 everywhere below. We calculate the leading term of the frequency 
determined by (2.13) for this case, assuming small deviations from the equilibrium posi- 

tion. Let B = -2@,/@RE(R,) [see (3.2)]. Then 

s ~ 600 ~ 
I V - - ~  R2* 1-1 riP1 R3.I2 ~ dR 

~1, F '~ %~(n,)  F ' B -  r 2 

[Ri, are the roots of the equation B = (R - R,)2]. Making the substitution R = (R2, + R~)/ 
2 + s(R2, - RI,)/2 and using (3.3) with o = 0, we obtain 

]// R=R *" 

3v~dp~/dv 2 
0 3 0  ~ "  . ,> 

If the gas is polytropic, then 

~0 ~ K ~  <P > / (P lR ~) .  ( 3 . 4 )  

As o n e  w o u l d  e x p e c t ,  ( 3 . 4 )  c o i n c i d e s  w i t h  t h e  M i n n a e r t  r e s o n a n c e  f r e q u e n c y  [ 4 ,  p~ 3 0 3 ] .  

We consider the equation of state (2.15) for strong oscillations in the case when the 
gas making up the bubbles is polytropie with ~ = 2. The roots of the equation @ = 0 can 
be calculated explicitly for this value of y. The function @ can be written in the form 

H - - < p > ( e J p i  + 4nR3n/3)  ~z -3 = - -PoRo,~nR n/o ( 3 . 5 )  

[Po a n d  R o a r e  c o n s t a n t s  c h a r a c t e r i z i n g  t h e  a d i a b a t i c  p r o c e s s  ( p a r  s = p o R o 6 ) ] .  L e t  

6 O ~ ~3. a : H - -  <p> cJp l ,  b = 4~n  (p>/3,  c : 4nnRoPo/O, z 

T h e n  ( 2 . 1 5 )  i s  t r a n s f o r m e d  t o  

(3.6) 

(u) = V(H,  (p >) =- q,"9~ -6 (4nn/3) I (4 /3) / I (1 /3)  ( 3 . 7 )  

z 2 

[~(~) ~.j  ~=a~ ---- =---- , z~ are the roots of the equation az - bz 2 - c = 0]. 
zt ~ az -- bz ~ -- r 

tution z = z I + t(z 2 -- zl), we have 

Making the substi- 

] 

-V; J V t  (I - t) 
0 

We assume strong oscillations, i.e., the parameter r = zl/(z2 - zl) is small. Then it fol- 
lows from (3.7) that 

1 

i t 5/~ (i - -  t) -1/2 dt ~- m 1 

<v> = el/p1 + 4an(z~ --ol),/o~ o o 

j" t -1/6 (l - -  t) - i /2  dt -~- m 2 
0 

[m i = O ( e i ) ,  m 2 = O ( e i i / a ) ] .  An e s t i m a t e  f o r  m i f o l l o w s  f r o m  t h e  i n e q u a l i t y  ( + s l )  a - 
t a ~ ~ia(t + r a-i (I < a < ~) and an estimate for m 2 follows from (t + r i/,t _ t I/3 s 
el I/s. Because z I = elz 2 + O(gz=), we finally obtain, with the help of (3.6) 

<~> = c/~h + L~ (~- <p> cJpl)/<p> + o (~/~) (3.8) 

Here the coefficient ~ is calculated from the equation 

= B ( i l l 6 ,  i12)IB(516, 112) (3.9) 
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(B(x, y) is the complete beta function [9]). Since B(p, q) = F(p)F(q)/F(p + q) [F(Z) is 
the gamma function, F(z + i) = zF(z)], it follows from (3.9) that p = 5/8. Since p < i, 
the inequality (3.1) is satisfied, i.e., the system of modulation equations is hyperbolic~ 
Letting 

H ~ H +  <p>cl/pl , <u>-+<v> + c~/pl ( 3 . 1 0 )  

and d i s c a r d i n g  t e rms  o f  o r d e r  0 ( r  we o b t a i n  from ( 3 . 8 )  t h a t  t h e  g a s - l i q u i d  medium be-  
haves  as a p o l y t r o p i c  gas  w i t h  index  8 /3 .  I t  i s  i n t e r e s t i n g  to  n o t e  t h a t  t h i s  "gas"  i s  no t  
an i d e a l  gas  [ 5 ] .  To show t h i s  we c a l c u l a t e  t he  " e n t r o p y "  S ( s e e  Theorem 3 . 1 ) :  

1 

l ~ n p ~ y  V 3 ( z  2 - -  (t+z/(z~--z,)) -2'3 ] / i ( l - - t )d t= 
0 

1 

2 / a \~I~ (" 1 - -  t)ll2t-~"6dt 

0 

[m 3 = O(ell/3)]~ An estimate for m 3 follows from the inequality l(t + el) -2/3 - t-2/31 
2~II/3t -I. Or, discarding terms of order O(e11/3), and using (3.6) and (3.10), we have 

S = coH~/3<p> -~/c, c o = V2np~/~(4nn/g) -51~(2/3)B(5/6 ,  3/2). ( 3 . 1 1 )  

And from ( 3 . 8 ) - ( 3 . 1 1 )  we f i n d  

( s ) ~  ~81~ <v>-s/3 cX (~.,2,,3T~ 

[m = (SH) -l is the "temperature"). Hence the Clapeyron equation does not hold. 

4. Discontinuous Solutions of the Modulation Equations. It is evident from the above 
examples that the system of modulation equations is hyperbolic in a certain region of the 
parameter space. Hence, one can consider shock waves in the medium. We note that shock 
waves cannot exist in the original system of equations (1.1)-(1.3) because the propagation 
velocity of weak perturbations is infinite and, therefore, the supersonic nature of the mo- 
tion ahead of the front of the shock wave cannot be described by these equations. 

The Hugoniot conditions for (2.16)-(2.18) are the usual conservation laws of mass, mo- 
mentum, and energy across the discontinuity. The frequency m behind the front is given by 
the final equation of (2.13). Finally, the constancy of the phase across the jump, which 
follows from (2.19), U[k] = [m] (U is the velocity of the discontinuity and the square brack- 
ets denote the jump of the corresponding quantity) gives the value of the wave number behind 
the front. Hence, the system of equations is complete on the discontinuity. 

The question of the constancy of the phase is controversial. Some reasons for con- 
stancy of phase, and also some alternative approaches, are given in [7, pp. 500-503; i0, 
pp. 42-45]. 

The author thanks R. M. Garipov, whose comments significantly improved the first draft 
of the paper, and also V. Yu. Lyapidevskii for useful discussions. 
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THE WAVEGU!DE EFFECT 

S. V. Sukhinin UDC 517.9+532.5+534.26 

The main purpose of scattering theory is the study of qualitative features of scattered 
waves. In the present study we investigate anomalous effects of the type of the waveguide 
effect for scattering problems by one-dimensional periodic structures. According to the 
definition of R. M. Garipov, the waveguide effect consists of the existence of eigenwaves 
localized in the vicinity of the structure. The properties of these waves are described 
by generalized eigenfunctions, being solutions of problems for steady-state oscillations. 
We consider existence conditions and the possibility of a waveguide effect for one-dimension- 
al periodic structures: for long waves on shallow water - a one-dimensional periodic under- 
water ridge of the plateau type; and for acoustic or electromagnetic waves - a one-dimension- 
al periodic lattice of plates or smooth obstacles.* 

I. Formulation of the Problem. Required Information. Let F describe on the plane I~ ~ 
of Cartesian variables (x, y) the boundary between free space and an obstacle. It is as- 
sumed that F can be connected by a curve or a set of quite smooth closed or disconnected 
curves. It is assumed that F is periodic along the y axis with period 2~. The obstacle 
can be penetrable or impenetrable (Fig. i). 

Wave effects near the obstacle are described by a quite smooth complex function u(x, y) 
outside the obstacle boundary F, whose physical content is specific to the problem. Let 
~i and ~2 be the regions into which F divides the plane R z. The contraction of the function 
u(x, y) to regions ~i and ~2 is denoted by u1(x , y) and u2(x, y), respectively. The func- 
tions u1(x, y) and u2(x, y) must be solutions of the Helmholtz equation: 

(A -;- Xzl~)~ I ~ Oin QI, (• -I- )~2)~2 = /in~2. (I.i) 

The following matching conditions are satisfied on the boundary F of the regions ~l and Q2: 

6u 1 = u 2, 7 0 u / ~ n  = OuJchl :on g. ( 1 . 2 )  

Here • > 0, 5 > 0, 7 > 0 are real, and ~ is a complex parameter, whose physical meaning is 
determined by the content of the effect investigated. The function f(x, y) describes 
sources of oscillation, and is assumed periodic in y with period 2~ and localized in the 
vicinity of the structure. All functions satisfy the condition of local finite energy 
[ule W21ocI(~i), u2e W~locl(~2)], and are assumed periodic along the y axis with period 
2~. 

The general solution of the homogeneous Helmholtz equation with parameter ~, satisfying 
the periodicity condition along y with period 2v, is 

u ( x , y )  ~] [ a ~ o x p ( i k y +  i Ix]c~)-~  ~ 

*The basic results of this study were presented at the 6th All-Union Congress on Theoretical 
and Applied Mechanics. 
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